New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfr | GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) |
Ref | Expression |
---|---|
nfr | ⊢ (Ⅎxφ → (φ → ∀xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1545 | . 2 ⊢ (Ⅎxφ ↔ ∀x(φ → ∀xφ)) | |
2 | sp 1747 | . 2 ⊢ (∀x(φ → ∀xφ) → (φ → ∀xφ)) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ (Ⅎxφ → (φ → ∀xφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfri 1762 nfrd 1763 19.21t 1795 19.23t 1800 nfimd 1808 nfaldOLD 1853 spimt 1974 sbft 2025 |
Copyright terms: Public domain | W3C validator |