NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfr GIF version

Theorem nfr 1761
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
Assertion
Ref Expression
nfr (Ⅎxφ → (φxφ))

Proof of Theorem nfr
StepHypRef Expression
1 df-nf 1545 . 2 (Ⅎxφx(φxφ))
2 sp 1747 . 2 (x(φxφ) → (φxφ))
31, 2sylbi 187 1 (Ⅎxφ → (φxφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfri  1762  nfrd  1763  19.21t  1795  19.23t  1800  nfimd  1808  nfaldOLD  1853  spimt  1974  sbft  2025
  Copyright terms: Public domain W3C validator