New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfd | GIF version |
Description: Deduce that x is not free in ψ in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfd.1 | ⊢ Ⅎxφ |
nfd.2 | ⊢ (φ → (ψ → ∀xψ)) |
Ref | Expression |
---|---|
nfd | ⊢ (φ → Ⅎxψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfd.1 | . . 3 ⊢ Ⅎxφ | |
2 | nfd.2 | . . 3 ⊢ (φ → (ψ → ∀xψ)) | |
3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀x(ψ → ∀xψ)) |
4 | df-nf 1545 | . 2 ⊢ (Ⅎxψ ↔ ∀x(ψ → ∀xψ)) | |
5 | 3, 4 | sylibr 203 | 1 ⊢ (φ → Ⅎxψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfdh 1767 nfnd 1791 nfndOLD 1792 nfald 1852 nfaldOLD 1853 nfeqf 1958 dvelimf 1997 a16nf 2051 nfsb2 2058 sbal2 2134 copsexg 4608 |
Copyright terms: Public domain | W3C validator |