| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfd | GIF version | ||
| Description: Deduce that x is not free in ψ in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfd.1 | ⊢ Ⅎxφ |
| nfd.2 | ⊢ (φ → (ψ → ∀xψ)) |
| Ref | Expression |
|---|---|
| nfd | ⊢ (φ → Ⅎxψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfd.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | nfd.2 | . . 3 ⊢ (φ → (ψ → ∀xψ)) | |
| 3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀x(ψ → ∀xψ)) |
| 4 | df-nf 1545 | . 2 ⊢ (Ⅎxψ ↔ ∀x(ψ → ∀xψ)) | |
| 5 | 3, 4 | sylibr 203 | 1 ⊢ (φ → Ⅎxψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfdh 1767 nfnd 1791 nfndOLD 1792 nfald 1852 nfaldOLD 1853 nfeqf 1958 dvelimf 1997 a16nf 2051 nfsb2 2058 sbal2 2134 copsexg 4608 |
| Copyright terms: Public domain | W3C validator |