NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnan GIF version

Theorem nfnan 1825
Description: If x is not free in φ and ψ, then it is not free in (φ ψ). (Contributed by Scott Fenton, 2-Jan-2018.)
Hypotheses
Ref Expression
nfan.1 xφ
nfan.2 xψ
Assertion
Ref Expression
nfnan x(φ ψ)

Proof of Theorem nfnan
StepHypRef Expression
1 df-nan 1288 . 2 ((φ ψ) ↔ ¬ (φ ψ))
2 nfan.1 . . . 4 xφ
3 nfan.2 . . . 4 xψ
42, 3nfan 1824 . . 3 x(φ ψ)
54nfn 1793 . 2 x ¬ (φ ψ)
61, 5nfxfr 1570 1 x(φ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358   wnan 1287  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfnin  3229
  Copyright terms: Public domain W3C validator