New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnan | GIF version |
Description: If x is not free in φ and ψ, then it is not free in (φ ⊼ ψ). (Contributed by Scott Fenton, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfan.1 | ⊢ Ⅎxφ |
nfan.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfnan | ⊢ Ⅎx(φ ⊼ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan 1288 | . 2 ⊢ ((φ ⊼ ψ) ↔ ¬ (φ ∧ ψ)) | |
2 | nfan.1 | . . . 4 ⊢ Ⅎxφ | |
3 | nfan.2 | . . . 4 ⊢ Ⅎxψ | |
4 | 2, 3 | nfan 1824 | . . 3 ⊢ Ⅎx(φ ∧ ψ) |
5 | 4 | nfn 1793 | . 2 ⊢ Ⅎx ¬ (φ ∧ ψ) |
6 | 1, 5 | nfxfr 1570 | 1 ⊢ Ⅎx(φ ⊼ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 ⊼ wnan 1287 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfnin 3229 |
Copyright terms: Public domain | W3C validator |