New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfbi | GIF version |
Description: If x is not free in φ and ψ, it is not free in (φ ↔ ψ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎxφ |
nf.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎx(φ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
3 | nf.2 | . . . 4 ⊢ Ⅎxψ | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxψ) |
5 | 2, 4 | nfbid 1832 | . 2 ⊢ ( ⊤ → Ⅎx(φ ↔ ψ)) |
6 | 5 | trud 1323 | 1 ⊢ Ⅎx(φ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊤ wtru 1316 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: euf 2210 sb8eu 2222 bm1.1 2338 abbi 2464 nfeq 2497 cleqf 2514 sbhypf 2905 ceqsexg 2971 elabgt 2983 elabgf 2984 cbviota 4345 sb8iota 4347 copsex2t 4609 copsex2g 4610 opelopabsb 4698 opeliunxp2 4823 ralxpf 4828 nfiso 5488 |
Copyright terms: Public domain | W3C validator |