NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfdh GIF version

Theorem nfdh 1767
Description: Deduce that x is not free in ψ in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfdh.1 (φxφ)
nfdh.2 (φ → (ψxψ))
Assertion
Ref Expression
nfdh (φ → Ⅎxψ)

Proof of Theorem nfdh
StepHypRef Expression
1 nfdh.1 . . 3 (φxφ)
21nfi 1551 . 2 xφ
3 nfdh.2 . 2 (φ → (ψxψ))
42, 3nfd 1766 1 (φ → Ⅎxψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  hbimd  1815  ax11indalem  2197  ax11inda2ALT  2198
  Copyright terms: Public domain W3C validator