New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcri | GIF version |
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2482, this does not require y and A to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ ℲxA |
Ref | Expression |
---|---|
nfcri | ⊢ Ⅎx y ∈ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . 3 ⊢ ℲxA | |
2 | 1 | nfcrii 2483 | . 2 ⊢ (y ∈ A → ∀x y ∈ A) |
3 | 2 | nfi 1551 | 1 ⊢ Ⅎx y ∈ A |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: nfnfc 2496 nfeq 2497 nfel 2498 cleqf 2514 sbabel 2516 r2alf 2650 r2exf 2651 nfrab 2793 cbvralf 2830 cbvrab 2858 sbcabel 3124 cbvcsb 3141 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 dfss2f 3265 nfiun 3996 nfiin 3997 cbviun 4004 cbviin 4005 nfxp 4811 opeliunxp 4821 nfmpt 5672 nfmpt2 5676 cbvmpt2x 5679 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |