New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfoprab1 | GIF version |
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfoprab1 | ⊢ Ⅎx{〈〈x, y〉, z〉 ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {w ∣ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ φ)} | |
2 | nfe1 1732 | . . 3 ⊢ Ⅎx∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ φ) | |
3 | 2 | nfab 2494 | . 2 ⊢ Ⅎx{w ∣ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ φ)} |
4 | 1, 3 | nfcxfr 2487 | 1 ⊢ Ⅎx{〈〈x, y〉, z〉 ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 {cab 2339 Ⅎwnfc 2477 〈cop 4562 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-oprab 5529 |
This theorem is referenced by: ov3 5600 nfmpt21 5674 |
Copyright terms: Public domain | W3C validator |