New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfe1 | GIF version |
Description: x is not free in ∃xφ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎx∃xφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1731 | . 2 ⊢ (∃xφ → ∀x∃xφ) | |
2 | 1 | nfi 1551 | 1 ⊢ Ⅎx∃xφ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-6 1729 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.23tOLD 1819 excomimOLD 1858 nf3 1867 19.38OLD 1874 exan 1882 equs5e 1888 exdistrf 1971 nfmo1 2215 euan 2261 eupicka 2268 mopick2 2271 euor2 2272 moexex 2273 2moex 2275 2euex 2276 2moswap 2279 2eu4 2287 2eu7 2290 2eu8 2291 nfre1 2671 ceqsexg 2971 morex 3021 sbc6g 3072 intab 3957 copsexg 4608 copsex2t 4609 copsex2g 4610 mosubopt 4613 nfopab1 4629 nfopab2 4630 dfid3 4769 imadif 5172 nfoprab1 5547 nfoprab2 5548 nfoprab3 5549 |
Copyright terms: Public domain | W3C validator |