New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfe1 | GIF version |
Description: x is not free in ∃xφ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎx∃xφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1731 | . 2 ⊢ (∃xφ → ∀x∃xφ) | |
2 | 1 | nfi 1551 | 1 ⊢ Ⅎx∃xφ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-6 1729 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.23tOLD 1819 excomimOLD 1858 nf3 1867 19.38OLD 1874 exan 1882 equs5e 1888 exdistrf 1971 nfmo1 2215 euan 2261 eupicka 2268 mopick2 2271 euor2 2272 moexex 2273 2moex 2275 2euex 2276 2moswap 2279 2eu4 2287 2eu7 2290 2eu8 2291 nfre1 2670 ceqsexg 2970 morex 3020 sbc6g 3071 intab 3956 copsexg 4607 copsex2t 4608 copsex2g 4609 mosubopt 4612 nfopab1 4628 nfopab2 4629 dfid3 4768 imadif 5171 nfoprab1 5546 nfoprab2 5547 nfoprab3 5548 |
Copyright terms: Public domain | W3C validator |