New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbft | GIF version |
Description: Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
sbft | ⊢ (Ⅎxφ → ([y / x]φ ↔ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1651 | . . 3 ⊢ ([y / x]φ → ∃x(x = y ∧ φ)) | |
2 | simpr 447 | . . . . 5 ⊢ ((x = y ∧ φ) → φ) | |
3 | 2 | ax-gen 1546 | . . . 4 ⊢ ∀x((x = y ∧ φ) → φ) |
4 | 19.23t 1800 | . . . 4 ⊢ (Ⅎxφ → (∀x((x = y ∧ φ) → φ) ↔ (∃x(x = y ∧ φ) → φ))) | |
5 | 3, 4 | mpbii 202 | . . 3 ⊢ (Ⅎxφ → (∃x(x = y ∧ φ) → φ)) |
6 | 1, 5 | syl5 28 | . 2 ⊢ (Ⅎxφ → ([y / x]φ → φ)) |
7 | nfr 1761 | . . 3 ⊢ (Ⅎxφ → (φ → ∀xφ)) | |
8 | stdpc4 2024 | . . 3 ⊢ (∀xφ → [y / x]φ) | |
9 | 7, 8 | syl6 29 | . 2 ⊢ (Ⅎxφ → (φ → [y / x]φ)) |
10 | 6, 9 | impbid 183 | 1 ⊢ (Ⅎxφ → ([y / x]φ ↔ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbf 2026 sbctt 3108 |
Copyright terms: Public domain | W3C validator |