New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsbc1d | GIF version |
Description: Deduction version of nfsbc1 3065. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1d.2 | ⊢ (φ → ℲxA) |
Ref | Expression |
---|---|
nfsbc1d | ⊢ (φ → Ⅎx[̣A / x]̣ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3048 | . 2 ⊢ ([̣A / x]̣ψ ↔ A ∈ {x ∣ ψ}) | |
2 | nfsbc1d.2 | . . 3 ⊢ (φ → ℲxA) | |
3 | nfab1 2492 | . . . 4 ⊢ Ⅎx{x ∣ ψ} | |
4 | 3 | a1i 10 | . . 3 ⊢ (φ → Ⅎx{x ∣ ψ}) |
5 | 2, 4 | nfeld 2505 | . 2 ⊢ (φ → Ⅎx A ∈ {x ∣ ψ}) |
6 | 1, 5 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx[̣A / x]̣ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1544 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-sbc 3048 |
This theorem is referenced by: nfsbc1 3065 nfcsb1d 3167 |
Copyright terms: Public domain | W3C validator |