New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcsb1d | GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1d.1 | ⊢ (φ → ℲxA) |
Ref | Expression |
---|---|
nfcsb1d | ⊢ (φ → Ⅎx[A / x]B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3137 | . 2 ⊢ [A / x]B = {y ∣ [̣A / x]̣y ∈ B} | |
2 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
3 | nfcsb1d.1 | . . . 4 ⊢ (φ → ℲxA) | |
4 | 3 | nfsbc1d 3063 | . . 3 ⊢ (φ → Ⅎx[̣A / x]̣y ∈ B) |
5 | 2, 4 | nfabd 2508 | . 2 ⊢ (φ → Ⅎx{y ∣ [̣A / x]̣y ∈ B}) |
6 | 1, 5 | nfcxfrd 2487 | 1 ⊢ (φ → Ⅎx[A / x]B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2476 [̣wsbc 3046 [csb 3136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-sbc 3047 df-csb 3137 |
This theorem is referenced by: nfcsb1 3167 |
Copyright terms: Public domain | W3C validator |