NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcid GIF version

Theorem sbcid 3063
Description: An identity theorem for substitution. See sbid 1922. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([̣x / xφφ)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3051 . 2 ([x / x]φ ↔ [̣x / xφ)
2 sbid 1922 . 2 ([x / x]φφ)
31, 2bitr3i 242 1 ([̣x / xφφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  [wsb 1648  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sbc 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator