New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcid | GIF version |
Description: An identity theorem for substitution. See sbid 1922. (Contributed by Mario Carneiro, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbcid | ⊢ ([̣x / x]̣φ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3051 | . 2 ⊢ ([x / x]φ ↔ [̣x / x]̣φ) | |
2 | sbid 1922 | . 2 ⊢ ([x / x]φ ↔ φ) | |
3 | 1, 2 | bitr3i 242 | 1 ⊢ ([̣x / x]̣φ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |