New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsbcd | GIF version |
Description: Deduction version of nfsbc 3068. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbcd.1 | ⊢ Ⅎyφ |
nfsbcd.2 | ⊢ (φ → ℲxA) |
nfsbcd.3 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfsbcd | ⊢ (φ → Ⅎx[̣A / y]̣ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3048 | . 2 ⊢ ([̣A / y]̣ψ ↔ A ∈ {y ∣ ψ}) | |
2 | nfsbcd.2 | . . 3 ⊢ (φ → ℲxA) | |
3 | nfsbcd.1 | . . . 4 ⊢ Ⅎyφ | |
4 | nfsbcd.3 | . . . 4 ⊢ (φ → Ⅎxψ) | |
5 | 3, 4 | nfabd 2509 | . . 3 ⊢ (φ → Ⅎx{y ∣ ψ}) |
6 | 2, 5 | nfeld 2505 | . 2 ⊢ (φ → Ⅎx A ∈ {y ∣ ψ}) |
7 | 1, 6 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx[̣A / y]̣ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1544 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-sbc 3048 |
This theorem is referenced by: nfsbc 3068 nfcsbd 3170 sbcnestgf 3184 |
Copyright terms: Public domain | W3C validator |