New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfabd | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfabd.1 | ⊢ Ⅎyφ |
nfabd.2 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfabd | ⊢ (φ → Ⅎx{y ∣ ψ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfabd.1 | . 2 ⊢ Ⅎyφ | |
2 | nfabd.2 | . . 3 ⊢ (φ → Ⅎxψ) | |
3 | 2 | adantr 451 | . 2 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) |
4 | 1, 3 | nfabd2 2508 | 1 ⊢ (φ → Ⅎx{y ∣ ψ}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 {cab 2339 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: nfsbcd 3067 nfcsb1d 3167 nfcsbd 3170 nfifd 3686 nfunid 3899 nfiotad 4343 |
Copyright terms: Public domain | W3C validator |