NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfcsbd GIF version

Theorem nfcsbd 3170
Description: Deduction version of nfcsb 3171. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1 yφ
nfcsbd.2 (φxA)
nfcsbd.3 (φxB)
Assertion
Ref Expression
nfcsbd (φx[A / y]B)

Proof of Theorem nfcsbd
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3138 . 2 [A / y]B = {z A / yz B}
2 nfv 1619 . . 3 zφ
3 nfcsbd.1 . . . 4 yφ
4 nfcsbd.2 . . . 4 (φxA)
5 nfcsbd.3 . . . . 5 (φxB)
65nfcrd 2503 . . . 4 (φ → Ⅎx z B)
73, 4, 6nfsbcd 3067 . . 3 (φ → ℲxA / yz B)
82, 7nfabd 2509 . 2 (φx{z A / yz B})
91, 8nfcxfrd 2488 1 (φx[A / y]B)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1544   wcel 1710  {cab 2339  wnfc 2477  wsbc 3047  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-sbc 3048  df-csb 3138
This theorem is referenced by:  nfcsb  3171
  Copyright terms: Public domain W3C validator