Step | Hyp | Ref
| Expression |
1 | | dfsbcq 3049 |
. . . . 5
⊢ (z = A →
([̣z / x]̣[̣B
/ y]̣φ ↔ [̣A / x]̣[̣B
/ y]̣φ)) |
2 | | csbeq1 3140 |
. . . . . 6
⊢ (z = A →
[z / x]B =
[A / x]B) |
3 | | dfsbcq 3049 |
. . . . . 6
⊢ ([z / x]B =
[A / x]B
→ ([̣[z / x]B /
y]̣φ ↔ [̣[A / x]B /
y]̣φ)) |
4 | 2, 3 | syl 15 |
. . . . 5
⊢ (z = A →
([̣[z / x]B /
y]̣φ ↔ [̣[A / x]B /
y]̣φ)) |
5 | 1, 4 | bibi12d 312 |
. . . 4
⊢ (z = A →
(([̣z / x]̣[̣B
/ y]̣φ ↔ [̣[z / x]B /
y]̣φ) ↔ ([̣A / x]̣[̣B
/ y]̣φ ↔ [̣[A / x]B /
y]̣φ))) |
6 | 5 | imbi2d 307 |
. . 3
⊢ (z = A →
((∀yℲxφ → ([̣z / x]̣[̣B
/ y]̣φ ↔ [̣[z / x]B /
y]̣φ)) ↔ (∀yℲxφ → ([̣A / x]̣[̣B
/ y]̣φ ↔ [̣[A / x]B /
y]̣φ)))) |
7 | | vex 2863 |
. . . . 5
⊢ z ∈
V |
8 | 7 | a1i 10 |
. . . 4
⊢ (∀yℲxφ → z ∈
V) |
9 | | csbeq1a 3145 |
. . . . . 6
⊢ (x = z →
B = [z / x]B) |
10 | | dfsbcq 3049 |
. . . . . 6
⊢ (B = [z /
x]B → ([̣B / y]̣φ
↔ [̣[z / x]B /
y]̣φ)) |
11 | 9, 10 | syl 15 |
. . . . 5
⊢ (x = z →
([̣B / y]̣φ
↔ [̣[z / x]B /
y]̣φ)) |
12 | 11 | adantl 452 |
. . . 4
⊢ ((∀yℲxφ ∧ x = z) →
([̣B / y]̣φ
↔ [̣[z / x]B /
y]̣φ)) |
13 | | nfnf1 1790 |
. . . . 5
⊢ ℲxℲxφ |
14 | 13 | nfal 1842 |
. . . 4
⊢ Ⅎx∀yℲxφ |
15 | | nfa1 1788 |
. . . . 5
⊢ Ⅎy∀yℲxφ |
16 | | nfcsb1v 3169 |
. . . . . 6
⊢
Ⅎx[z / x]B |
17 | 16 | a1i 10 |
. . . . 5
⊢ (∀yℲxφ → Ⅎx[z /
x]B) |
18 | | sp 1747 |
. . . . 5
⊢ (∀yℲxφ → Ⅎxφ) |
19 | 15, 17, 18 | nfsbcd 3067 |
. . . 4
⊢ (∀yℲxφ → Ⅎx[̣[z / x]B /
y]̣φ) |
20 | 8, 12, 14, 19 | sbciedf 3082 |
. . 3
⊢ (∀yℲxφ → ([̣z / x]̣[̣B
/ y]̣φ ↔ [̣[z / x]B /
y]̣φ)) |
21 | 6, 20 | vtoclg 2915 |
. 2
⊢ (A ∈ V → (∀yℲxφ → ([̣A / x]̣[̣B
/ y]̣φ ↔ [̣[A / x]B /
y]̣φ))) |
22 | 21 | imp 418 |
1
⊢ ((A ∈ V ∧ ∀yℲxφ) → ([̣A / x]̣[̣B
/ y]̣φ ↔ [̣[A / x]B /
y]̣φ)) |