| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > r19.45zv | GIF version | ||
| Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) | 
| Ref | Expression | 
|---|---|
| r19.45zv | ⊢ (A ≠ ∅ → (∃x ∈ A (φ ∨ ψ) ↔ (φ ∨ ∃x ∈ A ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.9rzv 3645 | . . 3 ⊢ (A ≠ ∅ → (φ ↔ ∃x ∈ A φ)) | |
| 2 | 1 | orbi1d 683 | . 2 ⊢ (A ≠ ∅ → ((φ ∨ ∃x ∈ A ψ) ↔ (∃x ∈ A φ ∨ ∃x ∈ A ψ))) | 
| 3 | r19.43 2767 | . 2 ⊢ (∃x ∈ A (φ ∨ ψ) ↔ (∃x ∈ A φ ∨ ∃x ∈ A ψ)) | |
| 4 | 2, 3 | syl6rbbr 255 | 1 ⊢ (A ≠ ∅ → (∃x ∈ A (φ ∨ ψ) ↔ (φ ∨ ∃x ∈ A ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ≠ wne 2517 ∃wrex 2616 ∅c0 3551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |