New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uneq1 | GIF version |
Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq1 | ⊢ (A = B → (A ∪ C) = (B ∪ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
2 | 1 | orbi1d 683 | . . 3 ⊢ (A = B → ((x ∈ A ∨ x ∈ C) ↔ (x ∈ B ∨ x ∈ C))) |
3 | elun 3221 | . . 3 ⊢ (x ∈ (A ∪ C) ↔ (x ∈ A ∨ x ∈ C)) | |
4 | elun 3221 | . . 3 ⊢ (x ∈ (B ∪ C) ↔ (x ∈ B ∨ x ∈ C)) | |
5 | 2, 3, 4 | 3bitr4g 279 | . 2 ⊢ (A = B → (x ∈ (A ∪ C) ↔ x ∈ (B ∪ C))) |
6 | 5 | eqrdv 2351 | 1 ⊢ (A = B → (A ∪ C) = (B ∪ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: uneq2 3413 uneq12 3414 uneq1i 3415 uneq1d 3418 unineq 3506 adj11 3890 uniprg 3907 pwadjoin 4120 eladdci 4400 elsuci 4415 addcass 4416 nnsucelr 4429 nnadjoin 4521 phi011 4600 cupvalg 5813 el2c 6192 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |