New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi2d | GIF version |
Description: Deduction adding a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
anbi2d | ⊢ (φ → ((θ ∧ ψ) ↔ (θ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | a1d 22 | . 2 ⊢ (φ → (θ → (ψ ↔ χ))) |
3 | 2 | pm5.32d 620 | 1 ⊢ (φ → ((θ ∧ ψ) ↔ (θ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi2 688 anbi12d 691 bi2anan9 843 2eu6 2289 eleq2 2414 ceqsex2 2895 ceqsex6v 2899 vtocl2gaf 2921 ceqsrex2v 2974 moeq3 3013 mob2 3016 eqreu 3028 undif4 3607 r19.27z 3648 r19.27zv 3649 ssunsn2 3865 ralunsn 3879 intab 3956 preq12bg 4128 pw1in 4164 cnvkeq 4215 ins2keq 4218 ins3keq 4219 sikeq 4241 opkelopkabg 4245 opkelxpkg 4247 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 eladdc 4398 addcass 4415 nnsucelr 4428 nndisjeq 4429 opkltfing 4449 preaddccan2lem1 4454 lenltfin 4469 ncfineq 4473 ncfinraise 4481 ncfinlower 4483 tfineq 4488 evenodddisj 4516 nnpweq 4523 sfineq2 4527 sfindbl 4530 vfinspsslem1 4550 vfinspss 4551 phialllem1 4616 opabbid 4624 setconslem1 4731 xpeq2 4799 rabxp 4814 vtoclr 4816 opeliunxp 4820 opbrop 4841 brswap2 4860 brco 4883 dfres2 5002 xp11 5056 elxp4 5108 nfunv 5138 fununi 5160 fneq2 5174 fnun 5189 iunfopab 5204 feq3 5212 foeq3 5267 dffn5 5363 fvopab4t 5385 fvopab3g 5386 fvopab3ig 5387 isoeq2 5483 isoeq3 5484 f1oiso 5499 f1oiso2 5500 brswap 5509 oprabbid 5563 cbvoprab3 5571 fnov 5591 ov 5595 ov3 5599 ov6g 5600 ovg 5601 mpt2mptx 5708 brsnsi1 5775 trtxp 5781 brimage 5793 qrpprod 5836 dmpprod 5840 clos1eq2 5875 clos1conn 5879 trd 5921 brltc 6114 lecex 6115 tceq 6158 ceexlem1 6173 ce2le 6233 tcfnex 6244 nmembers1 6271 nchoicelem11 6299 nchoicelem16 6304 nchoicelem19 6307 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |