New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi2d | GIF version |
Description: Deduction adding a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
anbi2d | ⊢ (φ → ((θ ∧ ψ) ↔ (θ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | a1d 22 | . 2 ⊢ (φ → (θ → (ψ ↔ χ))) |
3 | 2 | pm5.32d 620 | 1 ⊢ (φ → ((θ ∧ ψ) ↔ (θ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi2 688 anbi12d 691 bi2anan9 843 2eu6 2289 eleq2 2414 ceqsex2 2896 ceqsex6v 2900 vtocl2gaf 2922 ceqsrex2v 2975 moeq3 3014 mob2 3017 eqreu 3029 undif4 3608 r19.27z 3649 r19.27zv 3650 ssunsn2 3866 ralunsn 3880 intab 3957 preq12bg 4129 pw1in 4165 cnvkeq 4216 ins2keq 4219 ins3keq 4220 sikeq 4242 opkelopkabg 4246 opkelxpkg 4248 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 eladdc 4399 addcass 4416 nnsucelr 4429 nndisjeq 4430 opkltfing 4450 preaddccan2lem1 4455 lenltfin 4470 ncfineq 4474 ncfinraise 4482 ncfinlower 4484 tfineq 4489 evenodddisj 4517 nnpweq 4524 sfineq2 4528 sfindbl 4531 vfinspsslem1 4551 vfinspss 4552 phialllem1 4617 opabbid 4625 setconslem1 4732 xpeq2 4800 rabxp 4815 vtoclr 4817 opeliunxp 4821 opbrop 4842 brswap2 4861 brco 4884 dfres2 5003 xp11 5057 elxp4 5109 nfunv 5139 fununi 5161 fneq2 5175 fnun 5190 iunfopab 5205 feq3 5213 foeq3 5268 dffn5 5364 fvopab4t 5386 fvopab3g 5387 fvopab3ig 5388 isoeq2 5484 isoeq3 5485 f1oiso 5500 f1oiso2 5501 brswap 5510 oprabbid 5564 cbvoprab3 5572 fnov 5592 ov 5596 ov3 5600 ov6g 5601 ovg 5602 mpt2mptx 5709 brsnsi1 5776 trtxp 5782 brimage 5794 qrpprod 5837 dmpprod 5841 clos1eq2 5876 clos1conn 5880 trd 5922 brltc 6115 lecex 6116 tceq 6159 ceexlem1 6174 ce2le 6234 tcfnex 6245 nmembers1 6272 nchoicelem11 6300 nchoicelem16 6305 nchoicelem19 6308 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |