New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexprg | GIF version |
Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (x = A → (φ ↔ ψ)) |
ralprg.2 | ⊢ (x = B → (φ ↔ χ)) |
Ref | Expression |
---|---|
rexprg | ⊢ ((A ∈ V ∧ B ∈ W) → (∃x ∈ {A, B}φ ↔ (ψ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3743 | . . . 4 ⊢ {A, B} = ({A} ∪ {B}) | |
2 | 1 | rexeqi 2813 | . . 3 ⊢ (∃x ∈ {A, B}φ ↔ ∃x ∈ ({A} ∪ {B})φ) |
3 | rexun 3444 | . . 3 ⊢ (∃x ∈ ({A} ∪ {B})φ ↔ (∃x ∈ {A}φ ∨ ∃x ∈ {B}φ)) | |
4 | 2, 3 | bitri 240 | . 2 ⊢ (∃x ∈ {A, B}φ ↔ (∃x ∈ {A}φ ∨ ∃x ∈ {B}φ)) |
5 | ralprg.1 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
6 | 5 | rexsng 3767 | . . . 4 ⊢ (A ∈ V → (∃x ∈ {A}φ ↔ ψ)) |
7 | 6 | orbi1d 683 | . . 3 ⊢ (A ∈ V → ((∃x ∈ {A}φ ∨ ∃x ∈ {B}φ) ↔ (ψ ∨ ∃x ∈ {B}φ))) |
8 | ralprg.2 | . . . . 5 ⊢ (x = B → (φ ↔ χ)) | |
9 | 8 | rexsng 3767 | . . . 4 ⊢ (B ∈ W → (∃x ∈ {B}φ ↔ χ)) |
10 | 9 | orbi2d 682 | . . 3 ⊢ (B ∈ W → ((ψ ∨ ∃x ∈ {B}φ) ↔ (ψ ∨ χ))) |
11 | 7, 10 | sylan9bb 680 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → ((∃x ∈ {A}φ ∨ ∃x ∈ {B}φ) ↔ (ψ ∨ χ))) |
12 | 4, 11 | syl5bb 248 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (∃x ∈ {A, B}φ ↔ (ψ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ∪ cun 3208 {csn 3738 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
This theorem is referenced by: rextpg 3779 rexpr 3781 |
Copyright terms: Public domain | W3C validator |