New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fveq1 | GIF version |
Description: Equality theorem for function value. (Contributed by set.mm contributors, 29-Dec-1996.) |
Ref | Expression |
---|---|
fveq1 | ⊢ (F = G → (F ‘A) = (G ‘A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4642 | . . 3 ⊢ (F = G → (AFx ↔ AGx)) | |
2 | 1 | iotabidv 4361 | . 2 ⊢ (F = G → (℩xAFx) = (℩xAGx)) |
3 | df-fv 4796 | . 2 ⊢ (F ‘A) = (℩xAFx) | |
4 | df-fv 4796 | . 2 ⊢ (G ‘A) = (℩xAGx) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (F = G → (F ‘A) = (G ‘A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ℩cio 4338 class class class wbr 4640 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 df-br 4641 df-fv 4796 |
This theorem is referenced by: fveq1i 5330 fveq1d 5331 eqfnfv 5393 isoeq1 5483 oveq 5530 |
Copyright terms: Public domain | W3C validator |