NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm11.53 GIF version

Theorem pm11.53 1893
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.53 (xy(φψ) ↔ (xφyψ))
Distinct variable groups:   φ,y   ψ,x
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem pm11.53
StepHypRef Expression
1 19.21v 1890 . . 3 (y(φψ) ↔ (φyψ))
21albii 1566 . 2 (xy(φψ) ↔ x(φyψ))
3 nfv 1619 . . . 4 xψ
43nfal 1842 . . 3 xyψ
5419.23 1801 . 2 (x(φyψ) ↔ (xφyψ))
62, 5bitri 240 1 (xy(φψ) ↔ (xφyψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator