New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm11.53 | GIF version |
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm11.53 | ⊢ (∀x∀y(φ → ψ) ↔ (∃xφ → ∀yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1890 | . . 3 ⊢ (∀y(φ → ψ) ↔ (φ → ∀yψ)) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x∀y(φ → ψ) ↔ ∀x(φ → ∀yψ)) |
3 | nfv 1619 | . . . 4 ⊢ Ⅎxψ | |
4 | 3 | nfal 1842 | . . 3 ⊢ Ⅎx∀yψ |
5 | 4 | 19.23 1801 | . 2 ⊢ (∀x(φ → ∀yψ) ↔ (∃xφ → ∀yψ)) |
6 | 2, 5 | bitri 240 | 1 ⊢ (∀x∀y(φ → ψ) ↔ (∃xφ → ∀yψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |