NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.23vv GIF version

Theorem 19.23vv 1892
Description: Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
19.23vv (xy(φψ) ↔ (xyφψ))
Distinct variable groups:   ψ,x   ψ,y
Allowed substitution hints:   φ(x,y)

Proof of Theorem 19.23vv
StepHypRef Expression
1 19.23v 1891 . . 3 (y(φψ) ↔ (yφψ))
21albii 1566 . 2 (xy(φψ) ↔ x(yφψ))
3 19.23v 1891 . 2 (x(yφψ) ↔ (xyφψ))
42, 3bitri 240 1 (xy(φψ) ↔ (xyφψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  ssrelk  4212  eqrelk  4213  sikexlem  4296  insklem  4305  raliunxp  4824  ssopr  4847
  Copyright terms: Public domain W3C validator