| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.23vv | GIF version | ||
| Description: Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| 19.23vv | ⊢ (∀x∀y(φ → ψ) ↔ (∃x∃yφ → ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.23v 1891 | . . 3 ⊢ (∀y(φ → ψ) ↔ (∃yφ → ψ)) | |
| 2 | 1 | albii 1566 | . 2 ⊢ (∀x∀y(φ → ψ) ↔ ∀x(∃yφ → ψ)) | 
| 3 | 19.23v 1891 | . 2 ⊢ (∀x(∃yφ → ψ) ↔ (∃x∃yφ → ψ)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∀x∀y(φ → ψ) ↔ (∃x∃yφ → ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: ssrelk 4212 eqrelk 4213 sikexlem 4296 insklem 4305 raliunxp 4824 ssopr 4847 | 
| Copyright terms: Public domain | W3C validator |