New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  funfv GIF version

Theorem funfv 5375
 Description: A simplified expression for the value of a function when we know it's a function. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv (Fun F → (FA) = (F “ {A}))

Proof of Theorem funfv
StepHypRef Expression
1 fvex 5339 . . . . 5 (FA) V
21unisn 3907 . . . 4 {(FA)} = (FA)
3 eqid 2353 . . . . . . 7 dom F = dom F
4 df-fn 4790 . . . . . . 7 (F Fn dom F ↔ (Fun F dom F = dom F))
53, 4mpbiran2 885 . . . . . 6 (F Fn dom F ↔ Fun F)
6 fnsnfv 5373 . . . . . 6 ((F Fn dom F A dom F) → {(FA)} = (F “ {A}))
75, 6sylanbr 459 . . . . 5 ((Fun F A dom F) → {(FA)} = (F “ {A}))
87unieqd 3902 . . . 4 ((Fun F A dom F) → {(FA)} = (F “ {A}))
92, 8syl5eqr 2399 . . 3 ((Fun F A dom F) → (FA) = (F “ {A}))
109ex 423 . 2 (Fun F → (A dom F → (FA) = (F “ {A})))
11 ndmfv 5349 . . 3 A dom F → (FA) = )
12 ndmima 5025 . . . . 5 A dom F → (F “ {A}) = )
1312unieqd 3902 . . . 4 A dom F(F “ {A}) = )
14 uni0 3918 . . . 4 =
1513, 14syl6eq 2401 . . 3 A dom F(F “ {A}) = )
1611, 15eqtr4d 2388 . 2 A dom F → (FA) = (F “ {A}))
1710, 16pm2.61d1 151 1 (Fun F → (FA) = (F “ {A}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 358   = wceq 1642   ∈ wcel 1710  ∅c0 3550  {csn 3737  ∪cuni 3891   “ cima 4722  dom cdm 4772  Fun wfun 4775   Fn wfn 4776   ‘cfv 4781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-co 4726  df-ima 4727  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-fv 4795 This theorem is referenced by:  funfv2  5376  fvun  5378
 Copyright terms: Public domain W3C validator