New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > funfv | GIF version |
Description: A simplified expression for the value of a function when we know it's a function. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
funfv | ⊢ (Fun F → (F ‘A) = ∪(F “ {A})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 5340 | . . . . 5 ⊢ (F ‘A) ∈ V | |
2 | 1 | unisn 3908 | . . . 4 ⊢ ∪{(F ‘A)} = (F ‘A) |
3 | eqid 2353 | . . . . . . 7 ⊢ dom F = dom F | |
4 | df-fn 4791 | . . . . . . 7 ⊢ (F Fn dom F ↔ (Fun F ∧ dom F = dom F)) | |
5 | 3, 4 | mpbiran2 885 | . . . . . 6 ⊢ (F Fn dom F ↔ Fun F) |
6 | fnsnfv 5374 | . . . . . 6 ⊢ ((F Fn dom F ∧ A ∈ dom F) → {(F ‘A)} = (F “ {A})) | |
7 | 5, 6 | sylanbr 459 | . . . . 5 ⊢ ((Fun F ∧ A ∈ dom F) → {(F ‘A)} = (F “ {A})) |
8 | 7 | unieqd 3903 | . . . 4 ⊢ ((Fun F ∧ A ∈ dom F) → ∪{(F ‘A)} = ∪(F “ {A})) |
9 | 2, 8 | syl5eqr 2399 | . . 3 ⊢ ((Fun F ∧ A ∈ dom F) → (F ‘A) = ∪(F “ {A})) |
10 | 9 | ex 423 | . 2 ⊢ (Fun F → (A ∈ dom F → (F ‘A) = ∪(F “ {A}))) |
11 | ndmfv 5350 | . . 3 ⊢ (¬ A ∈ dom F → (F ‘A) = ∅) | |
12 | ndmima 5026 | . . . . 5 ⊢ (¬ A ∈ dom F → (F “ {A}) = ∅) | |
13 | 12 | unieqd 3903 | . . . 4 ⊢ (¬ A ∈ dom F → ∪(F “ {A}) = ∪∅) |
14 | uni0 3919 | . . . 4 ⊢ ∪∅ = ∅ | |
15 | 13, 14 | syl6eq 2401 | . . 3 ⊢ (¬ A ∈ dom F → ∪(F “ {A}) = ∅) |
16 | 11, 15 | eqtr4d 2388 | . 2 ⊢ (¬ A ∈ dom F → (F ‘A) = ∪(F “ {A})) |
17 | 10, 16 | pm2.61d1 151 | 1 ⊢ (Fun F → (F ‘A) = ∪(F “ {A})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∅c0 3551 {csn 3738 ∪cuni 3892 “ cima 4723 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-fv 4796 |
This theorem is referenced by: funfv2 5377 fvun 5379 |
Copyright terms: Public domain | W3C validator |