New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simplrr | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simplrr | ⊢ (((φ ∧ (ψ ∧ χ)) ∧ θ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((ψ ∧ χ) → χ) | |
2 | 1 | ad2antlr 707 | 1 ⊢ (((φ ∧ (ψ ∧ χ)) ∧ θ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm2.61da3ne 2597 rmob 3135 preaddccan2 4456 ncfinraise 4482 tfindi 4497 evenodddisj 4517 tfinnn 4535 enprmaplem3 6079 ncdisjun 6137 |
Copyright terms: Public domain | W3C validator |