NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simplrr GIF version

Theorem simplrr 737
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
Assertion
Ref Expression
simplrr (((φ (ψ χ)) θ) → χ)

Proof of Theorem simplrr
StepHypRef Expression
1 simpr 447 . 2 ((ψ χ) → χ)
21ad2antlr 707 1 (((φ (ψ χ)) θ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  pm2.61da3ne  2597  rmob  3135  preaddccan2  4456  ncfinraise  4482  tfindi  4497  evenodddisj  4517  tfinnn  4535  enprmaplem3  6079  ncdisjun  6137
  Copyright terms: Public domain W3C validator