New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simpll | GIF version |
Description: Simplification of a conjunction. (Contributed by NM, 18-Mar-2007.) |
Ref | Expression |
---|---|
simpll | ⊢ (((φ ∧ ψ) ∧ χ) → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (φ → φ) | |
2 | 1 | ad2antrr 706 | 1 ⊢ (((φ ∧ ψ) ∧ χ) → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simp1ll 1018 simp2ll 1022 simp3ll 1026 pm2.61da3ne 2597 rmob 3135 ifboth 3694 nndisjeq 4430 preaddccan2 4456 ltfinirr 4458 lenltfin 4470 sfintfin 4533 tfinnn 4535 imainss 5043 ncdisjun 6137 sbth 6207 leconnnc 6219 tlecg 6231 lemuc1 6254 nchoicelem4 6293 nchoicelem19 6308 nchoice 6309 |
Copyright terms: Public domain | W3C validator |