New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwjust GIF version

Theorem pwjust 3723
 Description: Soundness justification theorem for df-pw 3724. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust {x x A} = {y y A}
Distinct variable groups:   x,A   y,A

Proof of Theorem pwjust
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 sseq1 3292 . . 3 (x = z → (x Az A))
21cbvabv 2472 . 2 {x x A} = {z z A}
3 sseq1 3292 . . 3 (z = y → (z Ay A))
43cbvabv 2472 . 2 {z z A} = {y y A}
52, 4eqtri 2373 1 {x x A} = {y y A}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642  {cab 2339   ⊆ wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator