![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3287 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
2 | sstr2 3279 | . . . 4 ⊢ (B ⊆ A → (A ⊆ C → B ⊆ C)) | |
3 | 2 | adantl 452 | . . 3 ⊢ ((A ⊆ B ∧ B ⊆ A) → (A ⊆ C → B ⊆ C)) |
4 | sstr2 3279 | . . . 4 ⊢ (A ⊆ B → (B ⊆ C → A ⊆ C)) | |
5 | 4 | adantr 451 | . . 3 ⊢ ((A ⊆ B ∧ B ⊆ A) → (B ⊆ C → A ⊆ C)) |
6 | 3, 5 | impbid 183 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) → (A ⊆ C ↔ B ⊆ C)) |
7 | 1, 6 | sylbi 187 | 1 ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ⊆ wss 3257 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: sseq12 3294 sseq1i 3295 sseq1d 3298 nssne2 3328 psseq1 3356 uneqdifeq 3638 sbss 3659 pwjust 3723 elpw 3728 elpwg 3729 pwpw0 3855 sssn 3864 ssunsn2 3865 pwsnALT 3882 unimax 3925 pwadjoin 4119 eqpw1 4162 opkelssetkg 4268 sspw1 4335 sspw12 4336 ssfin 4470 tfinnn 4534 brssetg 4757 iss 5000 fununi 5160 funcnvuni 5161 ffoss 5314 clos1eq1 5874 frd 5922 mapsspm 6021 mapsspw 6022 mapsn 6026 enprmaplem6 6081 ovcelem1 6171 ceex 6174 nclec 6195 lec0cg 6198 ltcpw1pwg 6202 sbthlem2 6204 nc0le1 6216 dflec3 6221 lenc 6223 ce2le 6233 tlenc1c 6240 nchoicelem10 6298 nchoicelem13 6301 |
Copyright terms: Public domain | W3C validator |