New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3288 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
2 | sstr2 3280 | . . . 4 ⊢ (B ⊆ A → (A ⊆ C → B ⊆ C)) | |
3 | 2 | adantl 452 | . . 3 ⊢ ((A ⊆ B ∧ B ⊆ A) → (A ⊆ C → B ⊆ C)) |
4 | sstr2 3280 | . . . 4 ⊢ (A ⊆ B → (B ⊆ C → A ⊆ C)) | |
5 | 4 | adantr 451 | . . 3 ⊢ ((A ⊆ B ∧ B ⊆ A) → (B ⊆ C → A ⊆ C)) |
6 | 3, 5 | impbid 183 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) → (A ⊆ C ↔ B ⊆ C)) |
7 | 1, 6 | sylbi 187 | 1 ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: sseq12 3295 sseq1i 3296 sseq1d 3299 nssne2 3329 psseq1 3357 uneqdifeq 3639 sbss 3660 pwjust 3724 elpw 3729 elpwg 3730 pwpw0 3856 sssn 3865 ssunsn2 3866 pwsnALT 3883 unimax 3926 pwadjoin 4120 eqpw1 4163 opkelssetkg 4269 sspw1 4336 sspw12 4337 ssfin 4471 tfinnn 4535 brssetg 4758 iss 5001 fununi 5161 funcnvuni 5162 ffoss 5315 clos1eq1 5875 frd 5923 mapsspm 6022 mapsspw 6023 mapsn 6027 enprmaplem6 6082 ovcelem1 6172 ceex 6175 nclec 6196 lec0cg 6199 ltcpw1pwg 6203 sbthlem2 6205 nc0le1 6217 dflec3 6222 lenc 6224 ce2le 6234 tlenc1c 6241 nchoicelem10 6299 nchoicelem13 6302 |
Copyright terms: Public domain | W3C validator |