New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbidv | GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
abbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
abbidv | ⊢ (φ → {x ∣ ψ} = {x ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | abbidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | abbid 2466 | 1 ⊢ (φ → {x ∣ ψ} = {x ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: csbeq1 3139 sbcel12g 3151 sbceqg 3152 csbeq2d 3160 csbnestgf 3184 nineq1 3234 pweq 3725 sneq 3744 csbsng 3785 rabsn 3790 csbunig 3899 unieq 3900 inteq 3929 iineq1 3983 iineq2 3986 dfiin2g 4000 iinrab 4028 cnvkeq 4215 ins2keq 4218 ins3keq 4219 imakeq1 4224 imakeq2 4225 p6eq 4238 sikeq 4241 setswith 4321 iotaeq 4347 iotabi 4348 preaddccan2lem1 4454 nnadjoin 4520 tfinnn 4534 opabbid 4624 csbxpg 4813 imaeq1 4937 imaeq2 4938 csbrng 4966 imasn 5018 fnrnfv 5364 dfimafn 5366 fnsnfv 5373 fvco2 5382 oprabbid 5563 clos1eq1 5874 clos1eq2 5875 erth 5968 qseq1 5974 qseq2 5975 mapex 6006 mapvalg 6009 ovmuc 6130 ovce 6172 addccan2nclem2 6264 |
Copyright terms: Public domain | W3C validator |