NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.21be GIF version

Theorem r19.21be 2716
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
Hypothesis
Ref Expression
r19.21be.1 (φx A ψ)
Assertion
Ref Expression
r19.21be x A (φψ)

Proof of Theorem r19.21be
StepHypRef Expression
1 r19.21be.1 . . . 4 (φx A ψ)
21r19.21bi 2713 . . 3 ((φ x A) → ψ)
32expcom 424 . 2 (x A → (φψ))
43rgen 2680 1 x A (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator