New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nrex | GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (x ∈ A → ¬ ψ) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃x ∈ A ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (x ∈ A → ¬ ψ) | |
2 | 1 | rgen 2680 | . 2 ⊢ ∀x ∈ A ¬ ψ |
3 | ralnex 2625 | . 2 ⊢ (∀x ∈ A ¬ ψ ↔ ¬ ∃x ∈ A ψ) | |
4 | 2, 3 | mpbi 199 | 1 ⊢ ¬ ∃x ∈ A ψ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 df-rex 2621 |
This theorem is referenced by: rex0 3564 iun0 4023 0nelsuc 4401 addcnul1 4453 nulnnn 4557 0cnelphi 4598 proj1op 4601 proj2op 4602 nenpw1pwlem2 6086 nchoice 6309 fnfreclem2 6319 |
Copyright terms: Public domain | W3C validator |