NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nrex GIF version

Theorem nrex 2717
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1 (x A → ¬ ψ)
Assertion
Ref Expression
nrex ¬ x A ψ

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3 (x A → ¬ ψ)
21rgen 2680 . 2 x A ¬ ψ
3 ralnex 2625 . 2 (x A ¬ ψ ↔ ¬ x A ψ)
42, 3mpbi 199 1 ¬ x A ψ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wcel 1710  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620  df-rex 2621
This theorem is referenced by:  rex0  3564  iun0  4023  0nelsuc  4401  addcnul1  4453  nulnnn  4557  0cnelphi  4598  proj1op  4601  proj2op  4602  nenpw1pwlem2  6086  nchoice  6309  fnfreclem2  6319
  Copyright terms: Public domain W3C validator