NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.26-3 GIF version

Theorem r19.26-3 2749
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3 (x A (φ ψ χ) ↔ (x A φ x A ψ x A χ))

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 936 . . 3 ((φ ψ χ) ↔ ((φ ψ) χ))
21ralbii 2639 . 2 (x A (φ ψ χ) ↔ x A ((φ ψ) χ))
3 r19.26 2747 . 2 (x A ((φ ψ) χ) ↔ (x A (φ ψ) x A χ))
4 r19.26 2747 . . . 4 (x A (φ ψ) ↔ (x A φ x A ψ))
54anbi1i 676 . . 3 ((x A (φ ψ) x A χ) ↔ ((x A φ x A ψ) x A χ))
6 df-3an 936 . . 3 ((x A φ x A ψ x A χ) ↔ ((x A φ x A ψ) x A χ))
75, 6bitr4i 243 . 2 ((x A (φ ψ) x A χ) ↔ (x A φ x A ψ x A χ))
82, 3, 73bitri 262 1 (x A (φ ψ χ) ↔ (x A φ x A ψ x A χ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator