New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.26-3 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
r19.26-3 | ⊢ (∀x ∈ A (φ ∧ ψ ∧ χ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ ∧ ∀x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
2 | 1 | ralbii 2638 | . 2 ⊢ (∀x ∈ A (φ ∧ ψ ∧ χ) ↔ ∀x ∈ A ((φ ∧ ψ) ∧ χ)) |
3 | r19.26 2746 | . 2 ⊢ (∀x ∈ A ((φ ∧ ψ) ∧ χ) ↔ (∀x ∈ A (φ ∧ ψ) ∧ ∀x ∈ A χ)) | |
4 | r19.26 2746 | . . . 4 ⊢ (∀x ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ)) | |
5 | 4 | anbi1i 676 | . . 3 ⊢ ((∀x ∈ A (φ ∧ ψ) ∧ ∀x ∈ A χ) ↔ ((∀x ∈ A φ ∧ ∀x ∈ A ψ) ∧ ∀x ∈ A χ)) |
6 | df-3an 936 | . . 3 ⊢ ((∀x ∈ A φ ∧ ∀x ∈ A ψ ∧ ∀x ∈ A χ) ↔ ((∀x ∈ A φ ∧ ∀x ∈ A ψ) ∧ ∀x ∈ A χ)) | |
7 | 5, 6 | bitr4i 243 | . 2 ⊢ ((∀x ∈ A (φ ∧ ψ) ∧ ∀x ∈ A χ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ ∧ ∀x ∈ A χ)) |
8 | 2, 3, 7 | 3bitri 262 | 1 ⊢ (∀x ∈ A (φ ∧ ψ ∧ χ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ ∧ ∀x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∀wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |