| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.26-2 | GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| r19.26-2 | ⊢ (∀x ∈ A ∀y ∈ B (φ ∧ ψ) ↔ (∀x ∈ A ∀y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 2747 | . . 3 ⊢ (∀y ∈ B (φ ∧ ψ) ↔ (∀y ∈ B φ ∧ ∀y ∈ B ψ)) | |
| 2 | 1 | ralbii 2639 | . 2 ⊢ (∀x ∈ A ∀y ∈ B (φ ∧ ψ) ↔ ∀x ∈ A (∀y ∈ B φ ∧ ∀y ∈ B ψ)) |
| 3 | r19.26 2747 | . 2 ⊢ (∀x ∈ A (∀y ∈ B φ ∧ ∀y ∈ B ψ) ↔ (∀x ∈ A ∀y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B ψ)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∀x ∈ A ∀y ∈ B (φ ∧ ψ) ↔ (∀x ∈ A ∀y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: fununi 5161 |
| Copyright terms: Public domain | W3C validator |