New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabssdv | GIF version |
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
rabssdv.1 | ⊢ ((φ ∧ x ∈ A ∧ ψ) → x ∈ B) |
Ref | Expression |
---|---|
rabssdv | ⊢ (φ → {x ∈ A ∣ ψ} ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | . . . 4 ⊢ ((φ ∧ x ∈ A ∧ ψ) → x ∈ B) | |
2 | 1 | 3exp 1150 | . . 3 ⊢ (φ → (x ∈ A → (ψ → x ∈ B))) |
3 | 2 | ralrimiv 2697 | . 2 ⊢ (φ → ∀x ∈ A (ψ → x ∈ B)) |
4 | rabss 3344 | . 2 ⊢ ({x ∈ A ∣ ψ} ⊆ B ↔ ∀x ∈ A (ψ → x ∈ B)) | |
5 | 3, 4 | sylibr 203 | 1 ⊢ (φ → {x ∈ A ∣ ψ} ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 ∈ wcel 1710 ∀wral 2615 {crab 2619 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |