New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabssdv GIF version

Theorem rabssdv 3346
 Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1 ((φ x A ψ) → x B)
Assertion
Ref Expression
rabssdv (φ → {x A ψ} B)
Distinct variable groups:   x,B   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4 ((φ x A ψ) → x B)
213exp 1150 . . 3 (φ → (x A → (ψx B)))
32ralrimiv 2696 . 2 (φx A (ψx B))
4 rabss 3343 . 2 ({x A ψ} Bx A (ψx B))
53, 4sylibr 203 1 (φ → {x A ψ} B)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 934   ∈ wcel 1710  ∀wral 2614  {crab 2618   ⊆ wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rab 2623  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator