NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabssdv GIF version

Theorem rabssdv 3347
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1 ((φ x A ψ) → x B)
Assertion
Ref Expression
rabssdv (φ → {x A ψ} B)
Distinct variable groups:   x,B   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4 ((φ x A ψ) → x B)
213exp 1150 . . 3 (φ → (x A → (ψx B)))
32ralrimiv 2697 . 2 (φx A (ψx B))
4 rabss 3344 . 2 ({x A ψ} Bx A (ψx B))
53, 4sylibr 203 1 (φ → {x A ψ} B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934   wcel 1710  wral 2615  {crab 2619   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator