| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > rr19.3v | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 3644 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| rr19.3v | ⊢ (∀x ∈ A ∀y ∈ A φ ↔ ∀x ∈ A φ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biidd 228 | . . . 4 ⊢ (y = x → (φ ↔ φ)) | |
| 2 | 1 | rspcv 2952 | . . 3 ⊢ (x ∈ A → (∀y ∈ A φ → φ)) | 
| 3 | 2 | ralimia 2688 | . 2 ⊢ (∀x ∈ A ∀y ∈ A φ → ∀x ∈ A φ) | 
| 4 | ax-1 6 | . . . 4 ⊢ (φ → (y ∈ A → φ)) | |
| 5 | 4 | ralrimiv 2697 | . . 3 ⊢ (φ → ∀y ∈ A φ) | 
| 6 | 5 | ralimi 2690 | . 2 ⊢ (∀x ∈ A φ → ∀x ∈ A ∀y ∈ A φ) | 
| 7 | 3, 6 | impbii 180 | 1 ⊢ (∀x ∈ A ∀y ∈ A φ ↔ ∀x ∈ A φ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |