New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.12 | GIF version |
Description: Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.12 | ⊢ (∃x ∈ A ∀y ∈ B φ → ∀y ∈ B ∃x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . . . 4 ⊢ ℲyA | |
2 | nfra1 2665 | . . . 4 ⊢ Ⅎy∀y ∈ B φ | |
3 | 1, 2 | nfrex 2670 | . . 3 ⊢ Ⅎy∃x ∈ A ∀y ∈ B φ |
4 | ax-1 6 | . . 3 ⊢ (∃x ∈ A ∀y ∈ B φ → (y ∈ B → ∃x ∈ A ∀y ∈ B φ)) | |
5 | 3, 4 | ralrimi 2696 | . 2 ⊢ (∃x ∈ A ∀y ∈ B φ → ∀y ∈ B ∃x ∈ A ∀y ∈ B φ) |
6 | rsp 2675 | . . . . 5 ⊢ (∀y ∈ B φ → (y ∈ B → φ)) | |
7 | 6 | com12 27 | . . . 4 ⊢ (y ∈ B → (∀y ∈ B φ → φ)) |
8 | 7 | reximdv 2726 | . . 3 ⊢ (y ∈ B → (∃x ∈ A ∀y ∈ B φ → ∃x ∈ A φ)) |
9 | 8 | ralimia 2688 | . 2 ⊢ (∀y ∈ B ∃x ∈ A ∀y ∈ B φ → ∀y ∈ B ∃x ∈ A φ) |
10 | 5, 9 | syl 15 | 1 ⊢ (∃x ∈ A ∀y ∈ B φ → ∀y ∈ B ∃x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 |
This theorem is referenced by: iuniin 3980 |
Copyright terms: Public domain | W3C validator |