New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralinexa | GIF version |
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
ralinexa | ⊢ (∀x ∈ A (φ → ¬ ψ) ↔ ¬ ∃x ∈ A (φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 411 | . . 3 ⊢ ((φ → ¬ ψ) ↔ ¬ (φ ∧ ψ)) | |
2 | 1 | ralbii 2639 | . 2 ⊢ (∀x ∈ A (φ → ¬ ψ) ↔ ∀x ∈ A ¬ (φ ∧ ψ)) |
3 | ralnex 2625 | . 2 ⊢ (∀x ∈ A ¬ (φ ∧ ψ) ↔ ¬ ∃x ∈ A (φ ∧ ψ)) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀x ∈ A (φ → ¬ ψ) ↔ ¬ ∃x ∈ A (φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |