NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexanali GIF version

Theorem rexanali 2661
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
rexanali (x A (φ ¬ ψ) ↔ ¬ x A (φψ))

Proof of Theorem rexanali
StepHypRef Expression
1 annim 414 . . 3 ((φ ¬ ψ) ↔ ¬ (φψ))
21rexbii 2640 . 2 (x A (φ ¬ ψ) ↔ x A ¬ (φψ))
3 rexnal 2626 . 2 (x A ¬ (φψ) ↔ ¬ x A (φψ))
42, 3bitri 240 1 (x A (φ ¬ ψ) ↔ ¬ x A (φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-ral 2620  df-rex 2621
This theorem is referenced by:  transex  5911  antisymex  5913  foundex  5915  extex  5916  symex  5917  nclennlem1  6249  nchoicelem16  6305
  Copyright terms: Public domain W3C validator