| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexanali | GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| rexanali | ⊢ (∃x ∈ A (φ ∧ ¬ ψ) ↔ ¬ ∀x ∈ A (φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim 414 | . . 3 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) | |
| 2 | 1 | rexbii 2640 | . 2 ⊢ (∃x ∈ A (φ ∧ ¬ ψ) ↔ ∃x ∈ A ¬ (φ → ψ)) |
| 3 | rexnal 2626 | . 2 ⊢ (∃x ∈ A ¬ (φ → ψ) ↔ ¬ ∀x ∈ A (φ → ψ)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∃x ∈ A (φ ∧ ¬ ψ) ↔ ¬ ∀x ∈ A (φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wral 2615 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: transex 5911 antisymex 5913 foundex 5915 extex 5916 symex 5917 nclennlem1 6249 nchoicelem16 6305 |
| Copyright terms: Public domain | W3C validator |