| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralrimdvv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
| Ref | Expression |
|---|---|
| ralrimdvv.1 | ⊢ (φ → (ψ → ((x ∈ A ∧ y ∈ B) → χ))) |
| Ref | Expression |
|---|---|
| ralrimdvv | ⊢ (φ → (ψ → ∀x ∈ A ∀y ∈ B χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdvv.1 | . . . 4 ⊢ (φ → (ψ → ((x ∈ A ∧ y ∈ B) → χ))) | |
| 2 | 1 | imp 418 | . . 3 ⊢ ((φ ∧ ψ) → ((x ∈ A ∧ y ∈ B) → χ)) |
| 3 | 2 | ralrimivv 2706 | . 2 ⊢ ((φ ∧ ψ) → ∀x ∈ A ∀y ∈ B χ) |
| 4 | 3 | ex 423 | 1 ⊢ (φ → (ψ → ∀x ∈ A ∀y ∈ B χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: ralrimdvva 2710 |
| Copyright terms: Public domain | W3C validator |