| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralrimdvva | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| ralrimdvva.1 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ → χ)) | 
| Ref | Expression | 
|---|---|
| ralrimdvva | ⊢ (φ → (ψ → ∀x ∈ A ∀y ∈ B χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrimdvva.1 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ → χ)) | |
| 2 | 1 | ex 423 | . . 3 ⊢ (φ → ((x ∈ A ∧ y ∈ B) → (ψ → χ))) | 
| 3 | 2 | com23 72 | . 2 ⊢ (φ → (ψ → ((x ∈ A ∧ y ∈ B) → χ))) | 
| 4 | 3 | ralrimdvv 2709 | 1 ⊢ (φ → (ψ → ∀x ∈ A ∀y ∈ B χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |