| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (φ → ((x ∈ A ∧ y ∈ B) → ψ)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (φ → ∀x ∈ A ∀y ∈ B ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (φ → ((x ∈ A ∧ y ∈ B) → ψ)) | |
| 2 | 1 | exp3a 425 | . . 3 ⊢ (φ → (x ∈ A → (y ∈ B → ψ))) |
| 3 | 2 | ralrimdv 2704 | . 2 ⊢ (φ → (x ∈ A → ∀y ∈ B ψ)) |
| 4 | 3 | ralrimiv 2697 | 1 ⊢ (φ → ∀x ∈ A ∀y ∈ B ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: ralrimivva 2707 ralrimdvv 2709 reuind 3040 nnpweq 4524 trrd 5926 connexrd 5931 |
| Copyright terms: Public domain | W3C validator |