NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralrimivv GIF version

Theorem ralrimivv 2706
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1 (φ → ((x A y B) → ψ))
Assertion
Ref Expression
ralrimivv (φx A y B ψ)
Distinct variable groups:   x,y,φ   y,A
Allowed substitution hints:   ψ(x,y)   A(x)   B(x,y)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4 (φ → ((x A y B) → ψ))
21exp3a 425 . . 3 (φ → (x A → (y Bψ)))
32ralrimdv 2704 . 2 (φ → (x Ay B ψ))
43ralrimiv 2697 1 (φx A y B ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  ralrimivva  2707  ralrimdvv  2709  reuind  3040  nnpweq  4524  trrd  5926  connexrd  5931
  Copyright terms: Public domain W3C validator