| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((x ∈ A ∧ y ∈ B) → φ) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀x ∈ A ∀y ∈ B φ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((x ∈ A ∧ y ∈ B) → φ) | |
| 2 | 1 | ralrimiva 2698 | . 2 ⊢ (x ∈ A → ∀y ∈ B φ) |
| 3 | 2 | rgen 2680 | 1 ⊢ ∀x ∈ A ∀y ∈ B φ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: rgen3 2712 |
| Copyright terms: Public domain | W3C validator |