New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq1d GIF version

Theorem reseq1d 4933
 Description: Equality deduction for restrictions. (Contributed by set.mm contributors, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1 (φA = B)
Assertion
Ref Expression
reseq1d (φ → (A C) = (B C))

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2 (φA = B)
2 reseq1 4928 . 2 (A = B → (A C) = (B C))
31, 2syl 15 1 (φ → (A C) = (B C))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642   ↾ cres 4774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-res 4788 This theorem is referenced by:  reseq12d  4935  fun2ssres  5145
 Copyright terms: Public domain W3C validator