 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq12i GIF version

Theorem reseq12i 4932
 Description: Equality inference for restrictions. (Contributed by set.mm contributors, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 A = B
reseqi.2 C = D
Assertion
Ref Expression
reseq12i (A C) = (B D)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 A = B
21reseq1i 4930 . 2 (A C) = (B C)
3 reseqi.2 . . 3 C = D
43reseq2i 4931 . 2 (B C) = (B D)
52, 4eqtri 2373 1 (A C) = (B D)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ↾ cres 4774 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-opab 4623  df-xp 4784  df-res 4788 This theorem is referenced by:  cnvresid  5166
 Copyright terms: Public domain W3C validator