New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reseq2d | GIF version |
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
reseq2d | ⊢ (φ → (C ↾ A) = (C ↾ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . 2 ⊢ (φ → A = B) | |
2 | reseq2 4930 | . 2 ⊢ (A = B → (C ↾ A) = (C ↾ B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C ↾ A) = (C ↾ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-opab 4624 df-xp 4785 df-res 4789 |
This theorem is referenced by: reseq12d 4936 resabs1 4993 resima2 5008 f1orescnv 5302 f1ococnv2 5310 fnressn 5439 oprssov 5604 |
Copyright terms: Public domain | W3C validator |