![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > reseq2d | GIF version |
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
reseq2d | ⊢ (φ → (C ↾ A) = (C ↾ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . 2 ⊢ (φ → A = B) | |
2 | reseq2 4929 | . 2 ⊢ (A = B → (C ↾ A) = (C ↾ B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C ↾ A) = (C ↾ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ↾ cres 4774 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-opab 4623 df-xp 4784 df-res 4788 |
This theorem is referenced by: reseq12d 4935 resabs1 4992 resima2 5007 f1orescnv 5301 f1ococnv2 5309 fnressn 5438 oprssov 5603 |
Copyright terms: Public domain | W3C validator |