 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq1 GIF version

Theorem reseq1 4928
 Description: Equality theorem for restrictions. (Contributed by set.mm contributors, 7-Aug-1994.)
Assertion
Ref Expression
reseq1 (A = B → (A C) = (B C))

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3450 . 2 (A = B → (A ∩ (C × V)) = (B ∩ (C × V)))
2 df-res 4788 . 2 (A C) = (A ∩ (C × V))
3 df-res 4788 . 2 (B C) = (B ∩ (C × V))
41, 2, 33eqtr4g 2410 1 (A = B → (A C) = (B C))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642  Vcvv 2859   ∩ cin 3208   × cxp 4770   ↾ cres 4774 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-res 4788 This theorem is referenced by:  reseq1i  4930  reseq1d  4933
 Copyright terms: Public domain W3C validator