NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq1 GIF version

Theorem reseq1 4929
Description: Equality theorem for restrictions. (Contributed by set.mm contributors, 7-Aug-1994.)
Assertion
Ref Expression
reseq1 (A = B → (A C) = (B C))

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3451 . 2 (A = B → (A ∩ (C × V)) = (B ∩ (C × V)))
2 df-res 4789 . 2 (A C) = (A ∩ (C × V))
3 df-res 4789 . 2 (B C) = (B ∩ (C × V))
41, 2, 33eqtr4g 2410 1 (A = B → (A C) = (B C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  Vcvv 2860  cin 3209   × cxp 4771   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-res 4789
This theorem is referenced by:  reseq1i  4931  reseq1d  4934
  Copyright terms: Public domain W3C validator