![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > reseq1 | GIF version |
Description: Equality theorem for restrictions. (Contributed by set.mm contributors, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 | ⊢ (A = B → (A ↾ C) = (B ↾ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3450 | . 2 ⊢ (A = B → (A ∩ (C × V)) = (B ∩ (C × V))) | |
2 | df-res 4788 | . 2 ⊢ (A ↾ C) = (A ∩ (C × V)) | |
3 | df-res 4788 | . 2 ⊢ (B ↾ C) = (B ∩ (C × V)) | |
4 | 1, 2, 3 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A ↾ C) = (B ↾ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 Vcvv 2859 ∩ cin 3208 × cxp 4770 ↾ cres 4774 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-res 4788 |
This theorem is referenced by: reseq1i 4930 reseq1d 4933 |
Copyright terms: Public domain | W3C validator |