New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-res | ⊢ (A ↾ B) = (A ∩ (B × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | cres 4775 | . 2 class (A ↾ B) |
4 | cvv 2860 | . . . 4 class V | |
5 | 2, 4 | cxp 4771 | . . 3 class (B × V) |
6 | 1, 5 | cin 3209 | . 2 class (A ∩ (B × V)) |
7 | 3, 6 | wceq 1642 | 1 wff (A ↾ B) = (A ∩ (B × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: reseq1 4929 reseq2 4930 nfres 4937 brres 4950 csbresg 4977 res0 4978 resres 4981 resundi 4982 resundir 4983 resindi 4984 resindir 4985 inres 4986 resss 4989 ssres 4991 ssres2 4992 resopab 5000 ssrnres 5060 resdmres 5079 resexg 5117 ressnop0 5437 fvfullfunlem3 5864 |
Copyright terms: Public domain | W3C validator |