![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-res | ⊢ (A ↾ B) = (A ∩ (B × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | cres 4774 | . 2 class (A ↾ B) |
4 | cvv 2859 | . . . 4 class V | |
5 | 2, 4 | cxp 4770 | . . 3 class (B × V) |
6 | 1, 5 | cin 3208 | . 2 class (A ∩ (B × V)) |
7 | 3, 6 | wceq 1642 | 1 wff (A ↾ B) = (A ∩ (B × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: reseq1 4928 reseq2 4929 nfres 4936 brres 4949 csbresg 4976 res0 4977 resres 4980 resundi 4981 resundir 4982 resindi 4983 resindir 4984 inres 4985 resss 4988 ssres 4990 ssres2 4991 resopab 4999 ssrnres 5059 resdmres 5078 resexg 5116 ressnop0 5436 fvfullfunlem3 5863 |
Copyright terms: Public domain | W3C validator |