NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq2i GIF version

Theorem reseq2i 4932
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1 A = B
Assertion
Ref Expression
reseq2i (C A) = (C B)

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2 A = B
2 reseq2 4930 . 2 (A = B → (C A) = (C B))
31, 2ax-mp 5 1 (C A) = (C B)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-opab 4624  df-xp 4785  df-res 4789
This theorem is referenced by:  reseq12i  4933  rescom  4990  funcnvres  5166  resin  5308
  Copyright terms: Public domain W3C validator