| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > reubidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| reubidv.1 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (φ → (∃!x ∈ A ψ ↔ ∃!x ∈ A χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reubidv.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
| 3 | 2 | reubidva 2795 | 1 ⊢ (φ → (∃!x ∈ A ψ ↔ ∃!x ∈ A χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∃!wreu 2617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-eu 2208 df-reu 2622 |
| This theorem is referenced by: reueqd 2818 sbcreug 3123 |
| Copyright terms: Public domain | W3C validator |