New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimddv | GIF version |
Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
rexlimddv.1 | ⊢ (φ → ∃x ∈ A ψ) |
rexlimddv.2 | ⊢ ((φ ∧ (x ∈ A ∧ ψ)) → χ) |
Ref | Expression |
---|---|
rexlimddv | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddv.1 | . 2 ⊢ (φ → ∃x ∈ A ψ) | |
2 | rexlimddv.2 | . . 3 ⊢ ((φ ∧ (x ∈ A ∧ ψ)) → χ) | |
3 | 2 | rexlimdvaa 2740 | . 2 ⊢ (φ → (∃x ∈ A ψ → χ)) |
4 | 1, 3 | mpd 14 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |